3.18 \(\int \frac{\left (2+3 x^2\right ) \sqrt{5+x^4}}{x^2} \, dx\)

Optimal. Leaf size=171 \[ \frac{4 \sqrt{x^4+5} x}{x^2+\sqrt{5}}-\frac{\left (2-x^2\right ) \sqrt{x^4+5}}{x}+\frac{\sqrt [4]{5} \left (2+\sqrt{5}\right ) \left (x^2+\sqrt{5}\right ) \sqrt{\frac{x^4+5}{\left (x^2+\sqrt{5}\right )^2}} F\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{\sqrt{x^4+5}}-\frac{4 \sqrt [4]{5} \left (x^2+\sqrt{5}\right ) \sqrt{\frac{x^4+5}{\left (x^2+\sqrt{5}\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{\sqrt{x^4+5}} \]

[Out]

-(((2 - x^2)*Sqrt[5 + x^4])/x) + (4*x*Sqrt[5 + x^4])/(Sqrt[5] + x^2) - (4*5^(1/4
)*(Sqrt[5] + x^2)*Sqrt[(5 + x^4)/(Sqrt[5] + x^2)^2]*EllipticE[2*ArcTan[x/5^(1/4)
], 1/2])/Sqrt[5 + x^4] + (5^(1/4)*(2 + Sqrt[5])*(Sqrt[5] + x^2)*Sqrt[(5 + x^4)/(
Sqrt[5] + x^2)^2]*EllipticF[2*ArcTan[x/5^(1/4)], 1/2])/Sqrt[5 + x^4]

_______________________________________________________________________________________

Rubi [A]  time = 0.154998, antiderivative size = 171, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2 \[ \frac{4 \sqrt{x^4+5} x}{x^2+\sqrt{5}}-\frac{\left (2-x^2\right ) \sqrt{x^4+5}}{x}+\frac{\sqrt [4]{5} \left (2+\sqrt{5}\right ) \left (x^2+\sqrt{5}\right ) \sqrt{\frac{x^4+5}{\left (x^2+\sqrt{5}\right )^2}} F\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{\sqrt{x^4+5}}-\frac{4 \sqrt [4]{5} \left (x^2+\sqrt{5}\right ) \sqrt{\frac{x^4+5}{\left (x^2+\sqrt{5}\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{\sqrt{x^4+5}} \]

Antiderivative was successfully verified.

[In]  Int[((2 + 3*x^2)*Sqrt[5 + x^4])/x^2,x]

[Out]

-(((2 - x^2)*Sqrt[5 + x^4])/x) + (4*x*Sqrt[5 + x^4])/(Sqrt[5] + x^2) - (4*5^(1/4
)*(Sqrt[5] + x^2)*Sqrt[(5 + x^4)/(Sqrt[5] + x^2)^2]*EllipticE[2*ArcTan[x/5^(1/4)
], 1/2])/Sqrt[5 + x^4] + (5^(1/4)*(2 + Sqrt[5])*(Sqrt[5] + x^2)*Sqrt[(5 + x^4)/(
Sqrt[5] + x^2)^2]*EllipticF[2*ArcTan[x/5^(1/4)], 1/2])/Sqrt[5 + x^4]

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 14.4775, size = 175, normalized size = 1.02 \[ \frac{4 x \sqrt{x^{4} + 5}}{x^{2} + \sqrt{5}} - \frac{4 \sqrt [4]{5} \sqrt{\frac{x^{4} + 5}{\left (\frac{\sqrt{5} x^{2}}{5} + 1\right )^{2}}} \left (\frac{\sqrt{5} x^{2}}{5} + 1\right ) E\left (2 \operatorname{atan}{\left (\frac{5^{\frac{3}{4}} x}{5} \right )}\middle | \frac{1}{2}\right )}{\sqrt{x^{4} + 5}} + \frac{\sqrt [4]{5} \sqrt{\frac{x^{4} + 5}{\left (\frac{\sqrt{5} x^{2}}{5} + 1\right )^{2}}} \left (6 + 3 \sqrt{5}\right ) \left (\frac{\sqrt{5} x^{2}}{5} + 1\right ) F\left (2 \operatorname{atan}{\left (\frac{5^{\frac{3}{4}} x}{5} \right )}\middle | \frac{1}{2}\right )}{3 \sqrt{x^{4} + 5}} - \frac{\left (- 3 x^{2} + 6\right ) \sqrt{x^{4} + 5}}{3 x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((3*x**2+2)*(x**4+5)**(1/2)/x**2,x)

[Out]

4*x*sqrt(x**4 + 5)/(x**2 + sqrt(5)) - 4*5**(1/4)*sqrt((x**4 + 5)/(sqrt(5)*x**2/5
 + 1)**2)*(sqrt(5)*x**2/5 + 1)*elliptic_e(2*atan(5**(3/4)*x/5), 1/2)/sqrt(x**4 +
 5) + 5**(1/4)*sqrt((x**4 + 5)/(sqrt(5)*x**2/5 + 1)**2)*(6 + 3*sqrt(5))*(sqrt(5)
*x**2/5 + 1)*elliptic_f(2*atan(5**(3/4)*x/5), 1/2)/(3*sqrt(x**4 + 5)) - (-3*x**2
 + 6)*sqrt(x**4 + 5)/(3*x)

_______________________________________________________________________________________

Mathematica [C]  time = 0.161813, size = 108, normalized size = 0.63 \[ \frac{x^6-2 x^4-2 \sqrt [4]{-5} \left (\sqrt{5}-2 i\right ) \sqrt{x^4+5} x F\left (\left .i \sinh ^{-1}\left (\sqrt [4]{-\frac{1}{5}} x\right )\right |-1\right )-4 (-1)^{3/4} \sqrt [4]{5} \sqrt{x^4+5} x E\left (\left .i \sinh ^{-1}\left (\sqrt [4]{-\frac{1}{5}} x\right )\right |-1\right )+5 x^2-10}{x \sqrt{x^4+5}} \]

Antiderivative was successfully verified.

[In]  Integrate[((2 + 3*x^2)*Sqrt[5 + x^4])/x^2,x]

[Out]

(-10 + 5*x^2 - 2*x^4 + x^6 - 4*(-1)^(3/4)*5^(1/4)*x*Sqrt[5 + x^4]*EllipticE[I*Ar
cSinh[(-1/5)^(1/4)*x], -1] - 2*(-5)^(1/4)*(-2*I + Sqrt[5])*x*Sqrt[5 + x^4]*Ellip
ticF[I*ArcSinh[(-1/5)^(1/4)*x], -1])/(x*Sqrt[5 + x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.022, size = 167, normalized size = 1. \[ x\sqrt{{x}^{4}+5}+{\frac{2\,\sqrt{5}}{5\,\sqrt{i\sqrt{5}}}\sqrt{25-5\,i\sqrt{5}{x}^{2}}\sqrt{25+5\,i\sqrt{5}{x}^{2}}{\it EllipticF} \left ({\frac{x\sqrt{5}\sqrt{i\sqrt{5}}}{5}},i \right ){\frac{1}{\sqrt{{x}^{4}+5}}}}-2\,{\frac{\sqrt{{x}^{4}+5}}{x}}+{\frac{{\frac{4\,i}{5}}}{\sqrt{i\sqrt{5}}}\sqrt{25-5\,i\sqrt{5}{x}^{2}}\sqrt{25+5\,i\sqrt{5}{x}^{2}} \left ({\it EllipticF} \left ({\frac{x\sqrt{5}\sqrt{i\sqrt{5}}}{5}},i \right ) -{\it EllipticE} \left ({\frac{x\sqrt{5}\sqrt{i\sqrt{5}}}{5}},i \right ) \right ){\frac{1}{\sqrt{{x}^{4}+5}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((3*x^2+2)*(x^4+5)^(1/2)/x^2,x)

[Out]

x*(x^4+5)^(1/2)+2/5*5^(1/2)/(I*5^(1/2))^(1/2)*(25-5*I*5^(1/2)*x^2)^(1/2)*(25+5*I
*5^(1/2)*x^2)^(1/2)/(x^4+5)^(1/2)*EllipticF(1/5*x*5^(1/2)*(I*5^(1/2))^(1/2),I)-2
*(x^4+5)^(1/2)/x+4/5*I/(I*5^(1/2))^(1/2)*(25-5*I*5^(1/2)*x^2)^(1/2)*(25+5*I*5^(1
/2)*x^2)^(1/2)/(x^4+5)^(1/2)*(EllipticF(1/5*x*5^(1/2)*(I*5^(1/2))^(1/2),I)-Ellip
ticE(1/5*x*5^(1/2)*(I*5^(1/2))^(1/2),I))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{x^{4} + 5}{\left (3 \, x^{2} + 2\right )}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(x^4 + 5)*(3*x^2 + 2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + 5)*(3*x^2 + 2)/x^2, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{\sqrt{x^{4} + 5}{\left (3 \, x^{2} + 2\right )}}{x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(x^4 + 5)*(3*x^2 + 2)/x^2,x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + 5)*(3*x^2 + 2)/x^2, x)

_______________________________________________________________________________________

Sympy [A]  time = 3.84646, size = 78, normalized size = 0.46 \[ \frac{3 \sqrt{5} x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle |{\frac{x^{4} e^{i \pi }}{5}} \right )}}{4 \Gamma \left (\frac{5}{4}\right )} + \frac{\sqrt{5} \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - \frac{1}{4} \\ \frac{3}{4} \end{matrix}\middle |{\frac{x^{4} e^{i \pi }}{5}} \right )}}{2 x \Gamma \left (\frac{3}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((3*x**2+2)*(x**4+5)**(1/2)/x**2,x)

[Out]

3*sqrt(5)*x*gamma(1/4)*hyper((-1/2, 1/4), (5/4,), x**4*exp_polar(I*pi)/5)/(4*gam
ma(5/4)) + sqrt(5)*gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), x**4*exp_polar(I*pi)/
5)/(2*x*gamma(3/4))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{x^{4} + 5}{\left (3 \, x^{2} + 2\right )}}{x^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(x^4 + 5)*(3*x^2 + 2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + 5)*(3*x^2 + 2)/x^2, x)